博客
关于我
POJ2976 Dropping tests(二分+01分数规划)
阅读量:174 次
发布时间:2019-02-28

本文共 2380 字,大约阅读时间需要 7 分钟。

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 15 0 25 1 64 21 2 7 95 6 7 90 0

Sample Output

83100

Hint

To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

思路

开始陷入了思维误区,想着贪心解题,按照分子与分母差值从小到大排,还以为很对。仔细检验一下发现差值小未必对整体贡献大,正解实际应当是01分数规划。我们需要求解Σa[i]/Σb[i]的最大值,不妨设此最大值为max,则可知Σa[i]==Σb[i]*max。利用二分,我们可以不断取得mid,并通过Σa[i]与Σb[i]*mid的实际情况判断其相对于标准答案的大小关系。

代码

#include#include
#include
#include
#include
#include
#include
#include
using namespace std;const int mod=1e9+7;const int maxn=1e6+5;typedef long long ll;struct node{ double a,b,c;}s[maxn];bool cmp(node x,node y){ return x.c>y.c;}int k,n;bool check(double x){ double ans=0; for(int i=1;i<=n;i++) s[i].c=100*s[i].a-x*s[i].b; sort(s+1,s+1+n,cmp); for(int i=1;i<=n-k;i++) ans+=s[i].c; if(ans>=0) return false; else return true;}//概率int main(){ ios::sync_with_stdio(false); cin.tie(0);cout.tie(0); while(scanf("%d%d",&n,&k)&&n+k) { for(int i=1;i<=n;i++) scanf("%lf",&s[i].a); for(int i=1;i<=n;i++) scanf("%lf",&s[i].b); double l=0,r=100; while(r-l>0.001) { double mid=(l+r)/2; if(check(mid)) r=mid; else l=mid; } printf("%.0f\n",l); } return 0;}

转载地址:http://shjj.baihongyu.com/

你可能感兴趣的文章
Node.js RESTful API如何使用?
查看>>
node.js url模块
查看>>
Node.js Web 模块的各种用法和常见场景
查看>>
Node.js 之 log4js 完全讲解
查看>>
Node.js 函数是什么样的?
查看>>
Node.js 函数计算如何突破启动瓶颈,优化启动速度
查看>>
Node.js 切近实战(七) 之Excel在线(文件&文件组)
查看>>
node.js 初体验
查看>>
Node.js 历史
查看>>
Node.js 回调函数的原理、使用方法
查看>>
Node.js 在个推的微服务实践:基于容器的一站式命令行工具链
查看>>
Node.js 实现类似于.php,.jsp的服务器页面技术,自动路由
查看>>
Node.js 异步模式浅析
查看>>
node.js 怎么新建一个站点端口
查看>>
Node.js 文件系统的各种用法和常见场景
查看>>
Node.js 模块系统的原理、使用方式和一些常见的应用场景
查看>>
Node.js 的事件循环(Event Loop)详解
查看>>
node.js 简易聊天室
查看>>
Node.js 线程你理解的可能是错的
查看>>
Node.js 调用微信公众号 API 添加自定义菜单报错的解决方法
查看>>